Optimal Discrimination Designs for Exponential Regression Models

نویسندگان

  • Stefanie Biedermann
  • Holger Dette
  • Andrey Pepelyshev
چکیده

We investigate optimal designs for discriminating between exponential regression models of different complexity, which are widely used in the biological sciences; see, e.g., Landaw (1995) or Gibaldi and Perrier (1982). We discuss different approaches for the construction of appropriate optimality criteria, and find sharper upper bounds on the number of support points of locally optimal discrimination designs than those given by Caratheodory’s Theorem. These results greatly facilitate the numerical construction of optimal designs. Various examples of optimal designs are then presented and compared to different other designs. Moreover, to protect the experiment against misspecifications of the nonlinear model parameters, we adapt the design criteria such that the resulting designs are robust with respect to such misspecifications and, again, provide several examples, which demonstrate the advantages of our approach. AMS Classification: 62K05, 62J02

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained optimal discrimination designs for Fourier regression models

In this article, the problem of constructing efficient discrimination designs in a Fourier regression model is considered. We propose designs which maximize the power of the F-test, which discriminates between the two highest order models, subject to the constraints that the tests that discriminate between lower order models have at least some given relative power. A complete solution is presen...

متن کامل

Locally D-optimal Designs for Exponential Regression Models

We study locally D-optimal designs for some exponential models that are frequently used in the biological sciences. The model can be written as an algebraic sum of two or three exponential terms. We show that approximate locally D-optimal designs are supported at a minimal number of points and construct these designs numerically.

متن کامل

Optimal designs for a class of nonlinear regression models

For a broad class of nonlinear regression models we investigate the local Eand c-optimal design problem. It is demonstrated that in many cases the optimal designs with respect to these optimality criteria are supported at the Chebyshev points, which are the local extrema of the equi-oscillating best approximation of the function f0 ≡ 0 by a normalized linear combination of the regression functi...

متن کامل

Optimal Designs for a Class of Nonlinear Regression Models by Holger Dette,1 Viatcheslav B. Melas

For a broad class of nonlinear regression models we investigate the local Eand c-optimal design problem. It is demonstrated that in many cases the optimal designs with respect to these optimality criteria are supported at the Chebyshev points, which are the local extrema of the equi-oscillating best approximation of the function f0 ≡ 0 by a normalized linear combination of the regression functi...

متن کامل

1 3 M ay 2 01 6 Bayesian D - optimal designs for error - in - variables models

Bayesian optimality criteria provide a robust design strategy to parameter misspecification. We develop an approximate design theory for Bayesian D-optimality for nonlinear regression models with covariates subject to measurement errors. Both maximum likelihood and least squares estimation are studied and explicit characterisations of the Bayesian D-optimal saturated designs for the Michaelis-M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005